Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Helicobacter ; 29(2): e13074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615332

RESUMO

BACKGROUND: Helicobacter pylori is considered a true human pathogen for which rising drug resistance constitutes a drastic concern globally. The present study aimed to reconstruct a genome-scale metabolic model (GSMM) to decipher the metabolic capability of H. pylori strains in response to clarithromycin and rifampicin along with identification of novel drug targets. MATERIALS AND METHODS: The iIT341 model of H. pylori was updated based on genome annotation data, and biochemical knowledge from literature and databases. Context-specific models were generated by integrating the transcriptomic data of clarithromycin and rifampicin resistance into the model. Flux balance analysis was employed for identifying essential genes in each strain, which were further prioritized upon being nonhomologs to humans, virulence factor analysis, druggability, and broad-spectrum analysis. Additionally, metabolic differences between sensitive and resistant strains were also investigated based on flux variability analysis and pathway enrichment analysis of transcriptomic data. RESULTS: The reconstructed GSMM was named as HpM485 model. Pathway enrichment and flux variability analyses demonstrated reduced activity in the ribosomal pathway in both clarithromycin- and rifampicin-resistant strains. Also, a significant decrease was detected in the activity of metabolic pathways of clarithromycin-resistant strain. Moreover, 23 and 16 essential genes were exclusively detected in clarithromycin- and rifampicin-resistant strains, respectively. Based on prioritization analysis, cyclopropane fatty acid synthase and phosphoenolpyruvate synthase were identified as putative drug targets in clarithromycin- and rifampicin-resistant strains, respectively. CONCLUSIONS: We present a robust and reliable metabolic model of H. pylori. This model can predict novel drug targets to combat drug resistance and explore the metabolic capability of H. pylori in various conditions.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Claritromicina/farmacologia , Rifampina/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Bases de Dados Factuais
2.
Talanta ; 275: 126014, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615456

RESUMO

Clostridioides difficile (C. difficile) is the most common agent of antibiotic-associated diarrhea, leading to intestinal infection through the secretion of two major toxins. Not all strains of this bacterium are toxigenic, but some of them cause infection via their accessory virulence factors, such as surface layer protein (SlpA). SlpA is conserved in both toxigenic and non-toxigenic strains of C. difficile. In the present work, an amplification-free electrochemical genosensor was designed for the detection of the slpA gene. A glassy carbon electrode coated with gold nanoparticle-reduced graphene oxide nanocomposite was used as the working electrode, and its surface was modified using a simple thiolated linear oligonucleotide as the bioreceptor. Moreover, the hexaferrocenium tri[hexa(isothiocyanato) iron(III)] trihydroxonium (HxFc) complex was used as an intercalator, and its redox signal was recorded using differential pulse voltammetry. Scan rate studies indicated a quasi-reversible adsorption-controlled process for the HxFc complex. This genosensor showed high sensitivity with a limit of detection of 0.2 fM, a linear response range of 0.46-1900 fM, and a satisfactory specificity toward the synthetic slpA target gene. Also, the genosensor indicated responses in the mentioned linear range toward the genome extracted from either toxigenic or non-toxigenic strains of C. difficile.

3.
Clin Chim Acta ; 558: 119674, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621586

RESUMO

BACKGROUND: Clostridioides difficile infection (CDI) is the main etiologic agent of antibiotic-associated diarrhea. CDI contributes to gut inflammation and can lead to disruption of the intestinal epithelial barrier. Recently, the rate of CDI cases has been increased. Thus, early diagnosis of C. difficile is critical for controlling the infection and guiding efficacious therapy. APPROACH: A search strategy was set up using the terms C. difficile biomarkers and diagnosis. The found references were classified into two general categories; conventional and advanced methods. RESULTS: The pathogenicity and biomarkers of C. difficile, and the collection manners for CDI-suspected specimens were briefly explained. Then, the conventional CDI diagnostic methods were subtly compared in terms of duration, level of difficulty, sensitivity, advantages, and disadvantages. Thereafter, an extensive review of the various newly proposed techniques available for CDI detection was conducted including nucleic acid isothermal amplification-based methods, biosensors, and gene/single-molecule microarrays. Also, the detection mechanisms, pros and cons of these methods were highlighted and compared with each other. In addition, approximately complete information on FDA-approved platforms for CDI diagnosis was collected. CONCLUSION: To overcome the deficiencies of conventional methods, the potential of advanced methods for C. difficile diagnosis, their direction, perspective, and challenges ahead were discussed.

4.
Int. microbiol ; 27(2): 393-409, Abr. 2024.
Artigo em Inglês | IBECS | ID: ibc-232288

RESUMO

Clostridioides difficile infection (CDI) is the leading cause of healthcare-acquired infections worldwide. Probiotics are widely recommended to prevent CDI and its recurrences. Akkermansia muciniphila, as a therapeutic symbiont colonizing the intestinal mucosal layer, is considered to be a promising next-generation probiotic. In this work, we assessed the inhibitory effects of A. muciniphila MucT and its derivatives on cytotoxicity and inflammatory response induced by C. difficile RT001 in Caco-2 cells. The results obtained from SEM revealed that the morphology of UV-killed A. muciniphila remained unchanged after UV inactivation. TEM analysis showed that A. muciniphila–isolated extracellular vesicles (EVs) were spherical and ranged from 50 to 200 nm in size. Toxigenic supernatant (Tox-S) of C. difficile RT001 (500 μg/ml) significantly (P <0.01) reduced the cell viability of Caco-2 cells. Caco-2 cells treated with live (MOI 10), UV-killed (MOI 10), cell-free supernatant (CFS, 106 cfu/ml), and EVs (20 μg/ml) of A. muciniphila exhibited over 90% viability in comparison to untreated control. The neutralized CFS preparation using A. muciniphila and its derivatives could notably reduce the expression level of inflammatory markers. Additionally, A. muciniphila and its derivatives modulated the production of IL-1β, TNF-α, and IL-10 in Tox-S stimulated Caco-2 cells. We demonstrated that A. muciniphila and its derivatives can modulate changes in the gut barrier–related genes and inflammatory response caused by C. difficile Tox-S in Caco-2 cells. (AU)


Assuntos
Humanos , Infecções por Clostridium , Probióticos , Mucosa Intestinal , Citotoxicidade Imunológica
5.
Artigo em Inglês | MEDLINE | ID: mdl-38308067

RESUMO

Helicobacter pylori infection is the major risk factor associated with the development of gastric cancer. Currently, administration of standard antibiotic therapy combined with probiotics and postbiotics has gained significant attention in the management of H. pylori infection. In this work, the immunomodulatory effects of Lactobacillus crispatus-derived extracellular vesicles (EVs) and cell-free supernatant (CFS) were investigated on H. pylori-induced inflammatory response in human gastric adenocarcinoma (AGS) cells. L. crispatus-derived EVs were isolated by ultracentrifugation and physically characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Furthermore, the protein content of L. crispatus-derived EVs was also evaluated by SDS-PAGE. Cell viability of AGS cells exposed to varying concentrations of EVs and CFS was assessed by MTT assay. The mRNA expression of IL-1ß, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR. ELISA was used for the measurement of IL-8 production in AGS cells. In addition, EVs (50 µg/mL) and CFS modulated the H. pylori-induced inflammation by downregulating the mRNA expression of IL-1ß, IL-6, IL-8, and TNF-α, and upregulating the expression of IL-10, and TGF-ß genes in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with L. crispatus-derived EVs and CFS. In conclusion, our observation suggests for the first time that EVs released by L. crispatus strain RIGLD-1 and its CFS could be recommended as potential therapeutic agents against H. pylori-triggered inflammation.

6.
Mol Biol Rep ; 51(1): 265, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302841

RESUMO

BACKGROUND: The gut microbiota has become one of the main risk factors for the formation and development of colorectal cancer (CRC). CRC intensification may be due to the microbial pathogens' colonization and their released metabolites. Here, we analyzed Bacteroidetes and Clostridia bacteria in CRC patients and studied bacterial metabolome in cancerous tissues compared to their adjacent normal tissues. METHODS AND RESULTS: The population of selected bacteria in biopsy specimens of 30 patients with CRC was studied by RT-qPCR. The mutagenicity and cytotoxicity effects of microbiota metabolites were evaluated by Ames test and MTT Assay, respectively. Moreover, gene expression in carcinogenic pathways was studied by RT-qPCR, and genes with different expressions in tumor and non-tumor tissues were diagnosed. Based on microbiota analysis, the relative abundance of Clostridia and C. difficile was significantly higher in CRC tissue, whereas C. perfringens showed higher relative abundance in normal tissue. AIMES test confirmed the proliferation and mutagenicity effects of the bacterial metabolites in CRC patients. Significant upregulation of C-Myc, GRB2, IL-8, EGFR, PI3K, and AKT and downregulation of ATM were observed in CRC samples compared to the control. CONCLUSIONS: The influence of bacterial metabolites on inflammation and altered expression of genes in the cell signaling pathways was observed. The findings confirm the role gut microbiota composition and bacterial metabolites as key players in CRC onset and development.


Assuntos
Clostridioides difficile , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/metabolismo , Intestinos/patologia , Bactérias/genética , Células Epiteliais/metabolismo
7.
Int J Environ Health Res ; : 1-11, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415666

RESUMO

Free-living amoebae (FLA) are isolated from the hospital environments and known as Trojan horses for medical essential microorganisms. This study aimed to investigate the prevalence and the presence of FLA and two critical agents of nosocomial infections, in the hospital wards. Sixty samples were collected from four communities and cultured onto non-nutrient agar (NNA). After total DNA extraction, FLA were characterized using PCR and sequencing. The presence of Candida albicans and Staphylococcus aureus was evaluated using real-time and conventional PCR, respectively. Acanthamoeba sp. was characterized in 30 (50%) samples. Two (6.6%) and one (3.3%) samples were positive for Vahlkampfiidae and Vermamoeba vermiformis, respectively . S. aureus was detected in 13 (43.3%) of samples, while none of them were positive for methicillin-resistant gene. C. albicans DNA was detected in one (3.3%) FLA-positive sample. The isolation of FLA from hospital suggests an essential role these eukaryotes in the inter-ward circulation of nosocomial infections.

8.
BMC Complement Med Ther ; 24(1): 37, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218845

RESUMO

BACKGROUND: Clostridioides difficile infection (CDI) is one of the most common health care-acquired infections. The dramatic increase in antimicrobial resistance of C. difficile isolates has led to growing demand to seek new alternative medicines against CDI. Achillea millefolium L. extracts exhibit strong biological activity to be considered as potential therapeutic agents. In this work, the inhibitory effects of A. millefolium, its decoction (DEC) and ethanol (ETOH) extracts, were investigated on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S) induced inflammation and apoptosis. METHODS: Phytochemical analysis of extracts was performed by HPLC and GC analysis. The antimicrobial properties of extracts were evaluated against C. difficile RT001. Cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of extracts and Tox-S were examined by MTT assay and microscopy, respectively. Anti-inflammatory and anti-apoptotic effects of extracts were assessed in Tox-S stimulated Caco-2 cells by RT-qPCR. RESULTS: Analysis of the phytochemical profile of extracts revealed that the main component identified in both extracts was chlorogenic acid. Both extracts displayed significant antimicrobial activity against C. difficile RT001. Moreover, both extracts at concentration 50 µg/mL had no significant effect on cell viability compared to untreated cells. Pre-treatment of cells with extracts (50 µg/mL) significantly reduced the percentage of Vero cells rounding induced by Tox-S. Also, both pre-treatment and co-treatment of Tox-S stimulated Caco-2 cells with extracts significantly downregulated the gene expression level of IL-8, IL-1ß, TNF-α, TGF-ß, iNOS, Bax, caspase-9 and caspase-3 and upregulated the expression level of Bcl-2. CONCLUSION: The results of the present study for the first time demonstrate the antimicrobial activity and protective effects of A. millefolium extracts on inflammatory response and apoptosis induced by Tox-S from C. difficile RT001 clinical strain in vitro. Further research is needed to evaluate the potential application of A. millefolium extracts as supplementary medicine for CDI prevention and treatment in clinical setting.


Assuntos
Achillea , Anti-Infecciosos , Clostridioides difficile , Animais , Chlorocebus aethiops , Humanos , Clostridioides difficile/genética , Células CACO-2 , Ribotipagem , Células Vero , Achillea/química , Achillea/genética , Células Epiteliais , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos
9.
Microb Pathog ; 188: 106559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272328

RESUMO

Helicobacter pylori has been recognized as a true pathogen, which is associated with various gastroduodenal diseases, and gastric adenocarcinoma. The crosstalk between H. pylori virulence factors and host autophagy remains challenging. H. pylori can produce extracellular vesicles (EVs) that contribute to gastric inflammation and malignancy. Some probiotic strains have been documented to modulate cell autophagy process. This study was aimed to investigate the modulatory effect of cell-free supernatant (CFS) obtained from Lactobacillus gasseri ATCC 33323 on autophagy induced by H. pylori-derived EVs. EVs were isolated from two clinical H. pylori strains (BY-1 and OC824), and characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The viability of AGS cells was assessed after exposure to different concentrations of H. pylori EVs, and L. gasseri CFS. Based on MTT assay and Annexin V-FITC/PI staining, 50 µg/ml of H. pylori EVs and 10 % v/v of L. gasseri CFS were used for further cell treatment experiments. Autophagy was examined using acridin orange (AO) staining, RT-qPCR analysis for autophagy mediators (LC3B, ATG5, ATG12, ATG16L1, BECN1, MTOR, and NOD1), and western blotting for LC3B expression. H. pylori EVs were detected to range in size from 50 to 200 nm. EVs of both H. pylori strains and L. gasseri CFS showed no significant effect on cell viability as compared to untreated cells. H. pylori EVs promoted the development of acidic vesicular organelles and the expression of autophagy-related genes (LC3B, ATG5, ATG12, ATG16L1, BECN1, and NOD1), and decreased the expression of MTOR in AGS cells at 12 and 24 h time periods. In addition, the production of LC3B was increased following 12 h of treatment in AGS cells. In contrast, L. gasseri CFS effectively inhibited EVs-induced autophagy, as evidenced by reduced acidic vesicular organelle formation and modulation of autophagy markers. Our study indicated that L. gasseri CFS can effectively suppress H. pylori EV-induced autophagy in AGS cells. Further investigations are required to decipher the mechanism of action L. gasseri CFS and its metabolites on autophagy inhibition induced by H. pylori.


Assuntos
Vesículas Extracelulares , Infecções por Helicobacter , Helicobacter pylori , Lactobacillus gasseri , Humanos , Helicobacter pylori/genética , Células Epiteliais , Autofagia , Serina-Treonina Quinases TOR , Infecções por Helicobacter/terapia
10.
Small ; 20(3): e2302532, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697021

RESUMO

Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Quimioterapia Combinada , Nanotecnologia , Polímeros/farmacologia
11.
Front Microbiol ; 14: 1273094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965560

RESUMO

Introduction: The dramatic increase in multidrug-resistance of Clostridioides difficile isolates has led to the search for new complementary medicines against C. difficile infection (CDI). In this study, we aimed to examine the inhibitory effects of hydroethanolic extract of Mentha longifolia L. (ETOH-ML) on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S)-induced inflammation and apoptosis. Methods: The active phytochemical components of ETOH-ML were detected using GC and HPLC. The antimicrobial properties of the extract were examined against C. difficile RT001. Furthermore, cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of ETOH-ML, Tox-S of C. difficile RT001, and their combination were assessed. Anti-inflammatory and anti-apoptotic activities of ETOH-ML were explored in Tox-S stimulated Caco-2 cells using RT-qPCR. Results: Based on our results, rosmarinic acid was the main phytochemical component of ETOH-ML. The extract showed significant antimicrobial activity against C. difficile RT001 by agar dilution and broth microdilution methods. Moreover, ETOH-ML at concentrations of <25 µg/ml had no significant effect on cell viability compared to untreated cells. Treatment cells with the extract (10 or 25 µg/ml) significantly increased the cell viability and reduced the percentage of cell rounding in Caco-2 and Vero cells treated by Tox-S, respectively (P < 0.0001). Co-treatment of Tox-S stimulated Caco-2 cells with ETOH-ML showed significant anti-inflammatory and anti-apoptotic activities by downregulating the gene expression level of IL-8, IL-1ß, TNF-α, iNOS, TGF-ß, NF-κB, Bax, and caspase-3, while upregulating the expression level of Bcl-2. Discussion: Our results demonstrated for the first time the antimicrobial, anti-inflammatory, and anti-apoptotic effects of M. longifolia extract on C. difficile RT001 and its Tox-S. However, further research is needed to evaluate the potential application of M. longifolia extract on CDI treatment in clinical setting.

12.
Sci Rep ; 13(1): 20584, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996480

RESUMO

Gut microbiota dysbiosis is intimately associated with development of non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Nevertheless, the gut microbial community during the course of NAFLD and NASH is yet to be comprehensively profiled. This study evaluated alterations in fecal microbiota composition in Iranian patients with NAFLD and NASH compared with healthy individuals. This cross-sectional study enrolled 15 NAFLD, 15 NASH patients, and 20 healthy controls, and their clinical parameters were examined. The taxonomic composition of the fecal microbiota was determined by sequencing the V3-V4 region of 16S rRNA genes of stool samples. Compared to the healthy controls, NAFLD and NASH patients presented reduced bacterial diversity and richness. We noticed a reduction in the relative abundance of Bacteroidota and a promotion in the relative abundance of Proteobacteria in NAFLD and NASH patients. L-histidine degradation I pathway, pyridoxal 5'-phosphate biosynthesis I pathway, and superpathway of pyridoxal 5'-phosphate biosynthesis and salvage were more abundant in NAFLD patients than in healthy individuals. This study examined fecal microbiota dysbiosis in NAFLD and NASH patients and presented consistent results to European countries. These condition- and ethnicity-specific data could provide different diagnostic signatures and therapeutic targets.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Microbioma Gastrointestinal/genética , Irã (Geográfico) , Disbiose/microbiologia , Estudos Transversais , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Fosfatos/metabolismo , Piridoxal/metabolismo , Fígado/metabolismo
13.
Eur J Med Res ; 28(1): 483, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932792

RESUMO

Irritable bowel syndrome (IBS) is a prevalent gastrointestinal (GI) tract disorder. Although the main reason for IBS is not clear, the interaction between intestinal microorganisms and the gut barrier seems to play an important role in pathogenesis of IBS. The current study aimed to investigate the effect of Blastocystis on the gut microbiota profile and the circulation levels of microRNA (mir)-16 of IBS patients compared to healthy subjects. Stool and blood samples were collected from 80 participants including 40 samples from each IBS and healthy group. Upon DNA extraction from stool samples, barcoding region and quantitative real-time PCR were analyzed to investigate Blastocystis and the microbiota profile, respectively. RNA was extracted from serum samples of included subjects and the expression of mir-16 was evaluated using stem-loop protocol and qreal-time PCR. Significant changes between IBS patients and healthy controls was observed in Firmicutes, Actinobacteria, Faecalibacterium, and Alistipes. In IBS patients, the relative abundance of Bifidobacteria was directly correlated with the presence of Blastocystis, while Alistipes was decreased with Blastocystis. Lactobacillus was significantly increased in Blastocystis carriers. In healthy subjects, the relative abundance of Bifidobacteria was decreased, but Alistipes was increased in Blastocystis carriers. The changes in the Firmicutes/Bacteroidetes ratio was not significant in different groups. The relative expression of mir-16 in Blastocystis-negative IBS patients and healthy carriers was significantly overexpressed compared to control group. The presence of Blastocystis, decreased the relative expression of mir-16 in IBS patients compared to Blastocystis-negative IBS patients. The present study revealed that Blastocystis has the ability to change the abundance of some phyla/genera of bacteria in IBS and healthy subjects. Moreover, Blastocystis seems to  modulate the relative expression of microRNAs  to control the gut atmosphere, apply its pathogenicity, and provide a favor niche for its colonization.


Assuntos
Infecções por Blastocystis , Blastocystis , MicroRNA Circulante , Síndrome do Intestino Irritável , MicroRNAs , Microbiota , Humanos , Infecções por Blastocystis/microbiologia , Estudos de Casos e Controles
14.
Microb Pathog ; 185: 106450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979713

RESUMO

Autophagy is a homeostatic process that can promote cell survival or death. However, the exact role of autophagy in Clostridioides difficile infection (CDI) is still not precisely elucidated. Here, we investigate the role of distinct C. difficile ribotypes (RTs) in autophagy induction using Caco-2 cells. The expression analysis of autophagy-associated genes and related miRNAs were examined following treatment of Caco-2 cells with C. difficile after 4 and 8 h using RT-qPCR. Toxin production was assessed using enzyme-linked immunosorbent assay (ELISA). Immunofluorescence analysis was performed to detect MAP1LC3B/LC3B, followed by an autophagic flux analysis. C. difficile significantly reduced the viability of Caco-2 cells in comparison with untreated cells. Elevated levels of LC3-II and SQSTM1/p62 by C. difficile RT001 and RT084 in the presence of E64d/leupeptin confirmed the induction of autophagy activity. Similarly, the immunofluorescence analysis demonstrated that C. difficile RT001 and RT084 significantly increased the amount of LC3-positive structures in Caco-2 cells. The induction of autophagy was further demonstrated by increased levels of LC3B, ULK1, ATG12, PIK3C3/VPS34, BECN1 (beclin 1), ATG5, and ATG16L1 transcripts and reduced levels of AKT and MTOR gene expression. The expression levels of MIR21 and MIR30B, microRNAs that suppress autophagy, were differentially affected by C. difficile. In conclusion, the present work revealed that C. difficile bacteria can induce autophagy through both toxin-dependent and -independent mechanisms. Also, our results suggest the potential role of other C. difficile virulence factors in autophagy modulation using intestinal cells in vitro.


Assuntos
Clostridioides difficile , Humanos , Células CACO-2 , Clostridioides difficile/genética , Clostridioides , Ribotipagem , Autofagia , Reação em Cadeia da Polimerase
18.
Heliyon ; 9(9): e19607, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810022

RESUMO

Over time, mounting evidence has demonstrated extra-gastric manifestations of Helicobacter pylori infection. As such, a number of studies demonstrated the potential contribution of H. pylori infection to the incidence and progression of Alzheimer's disease (AD). Considering unanswered questions regarding the effect of H. pylori infection on brain activity, we sought to investigate the impact of H. pylori infection on the expression of AD-associated risk factors. We used two H. pylori clinical strains obtained from two patients with peptic ulcer and evaluated their influence on the expression level of AD-associated genes (APP, ApoE2, ApoE4, ABCA7, BIN1, Clu, CD33) and genes for inflammatory markers (TLR-4, IL-8, TNF-α) by RT-qPCR in human glioblastoma (U87MG) and astrocyte (1321N1) cell lines. The expression of inflammatory cytokines was further assessed by ELISA assay. The exposure of U97MG and 1321N1 cells to H. pylori strains resulted in a significant enhancement in the expression level of the risk allele ApoE4, while reducing the expression of the protective allele ApoE2. H. pylori infection remarkably increased the expression level of main AD-associated risk genes, and also pro-inflammatory cytokines. Furthermore, we noticed a substantial elevation in the mRNA expression level of transmembrane receptor TLR-4 following H. pylori infection. Our findings presented the potential for H. pylori to stimulate the expression of AD-associated risk genes and trigger neuroinflammation in the brain tissue. This, in principle, leads to the recommendation that AD patients should perhaps test for H. pylori infection and receive treatments upon positive detection.

19.
Microbiol Spectr ; : e0531022, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668373

RESUMO

TcdA and TcdB are known as the major virulence attributes of Clostridioides difficile. Hence, neutralizing the TcdA and TcdB activities can be considered as an efficient therapeutic approach against C. difficile infection (CDI). In this work, we utilized phage display technique to select single-chain fragment variable (scFv) fragments as recombinant antibodies displayed on the surface of phages, which specifically target native TcdA, or TcdB (nTcdA and nTcdB), and their recombinant C-terminal combined repetitive oligopeptide (CROP) domains (rTcdA and rTcdB). After three rounds of biopanning, abundance of phage clones displaying high reactivity with TcdA or TcdB was quantified through enzyme-linked immunosorbent assay (ELISA). Furthermore, selected scFvs were characterized by cell viability and neutralization assays. The gene expression of immunological markers, IL-8 and TNF-α, was examined in treated Caco-2 cells by RT-qPCR. The epitopes of neutralizing scFvs were also identified by molecular docking. Totally, 18 scFv antibodies (seven for TcdA and 11 for TcdB) were identified by ELISA. Among selected scFvs, two clones for TcdA (rA-C2, A-C9) and three clones for TcdB (rB-B4, B-F5, B-F11) exhibited the highest neutralizing activity in Caco-2 and Vero cells. Moreover, the cocktail of anti-TcdA and anti-TcdB antibodies notably decreased the mRNA expression of TNF-α and IL-8 in Caco-2 cells. Molecular docking revealed that the interaction between scFv and toxin was mostly restricted to CROP domain of TcdA or TcdB. Our results collectively provided more insights for the development of neutralizing scFvs against C. difficile toxins using phage display. Further research is needed to meticulously evaluate the potential of scFvs as an alternative treatment for CDI using animal models and clinical trials.IMPORTANCETargeting the major toxins of Clostridioides difficile by neutralizing antibodies is a novel therapeutic approach for CDI. Here, we report a panel of new anti-TcdA (rA-C2, A-C9) and anti-TcdB (rB-B4, B-F5, and B-F11) recombinant antibody fragments (scFvs) isolated from Tomlinson I and J libraries using phage display technique. These scFv antibodies were capable of neutralizing their respective toxin and showed promise as potential therapeutics against TcdA and TcdB of C. difficile in different in vitro models. In addition, in silico analysis showed that at least two neutralization mechanisms, including inhibiting cell surface binding of toxins and inhibiting toxin internalization can be proposed for the isolated scFvs in this work. These findings provide more insights for the applicability of specific scFvs toward C. difficile toxins at in vitro level. However, further research is required to evaluate the potential application of these scFvs as therapeutic agents for CDI treatment in clinical setting.

20.
Contemp Clin Trials Commun ; 35: 101201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37680267

RESUMO

Coeliac disease (CD) is associated with alterations in gut microbiota composition. This study evaluated the effects of probiotics on gut microbiota composition and clinical symptoms of treated CD patients. In this double-blind, placebo-controlled trial study, 31 CD patients that were randomly classified as probiotics (n = 15) and placebo (n = 16) groups received 109 colony-forming units/capsule for 12 weeks. Fecal samples were collected before and after probiotics, or placebo administration and the changes in intestinal microbiota were assessed by quantitative real-time PCR. Probiotic administration improved the patients' clinical symptoms when compared to the placebo group. Fatigue score was significantly reduced by the intake of probiotic supplements (P = 0.02). Except for Staphylococcus spp., the relative abundances of Bacteroidetes, Lactobacillus spp., Bifidobacterium spp., Clostridium cluster I, Enterobacteriaceae, and Firmicutes were higher in probiotics group. Accordingly, a 12-week multi-strain probiotic treatment regimen may modify the composition of intestinal microbiota and improve GI symptoms in CD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...